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Introduction

In volume-balance calculations of surface irrigation, the infiltrated
volume Vz[L3] at a given time is commonly calculated with an ex-
pression derived from the Lewis and Milne (1938) equation

VZðtÞ ¼
Z

t

0
Zðt � txÞ

dxA
dtx

dtx ð1Þ

In the previous expression, Z = a function describing the infil-
trated volume per unit length [L2] as a function of intake opportu-
nity time, τ ¼ t � tx; t = time elapsed since the beginning of the
irrigation [T]; tx = the time for the advancing wave of water to reach
distance xA [L]; and dxA∕dtx = the derivative of a function describ-
ing advance distance as a function of time. The solution to Eq. (1)
depends on the assumed functional forms for Z and xAðtxÞ (Philip
and Farrell 1964; Smerdon et al. 1988).

Assuming infiltration follows the empirical extended Kostiakov
infiltration equation

Z ¼ Wz ¼ Wðkτa þ bτÞ ð2Þ
and advance distance as a function of time follows a power law

xA ¼ ptr ð3Þ

integration of Eq. (1) yields

VzðtÞ ¼ ðRZ1 · kta þ RZ2 · btÞ ·W · xAðtÞ ð4Þ

In Eqs. (2) and (3), k[L2∕Ta], a [−], b½L2T�, p[L∕Tr], and
r [−] = empirical parameters, specific to the particular field con-
ditions; and W [L] = transverse width (border/basin width, furrow
spacing, or average wetted perimiter). Here, Eq. (4) relates Vz to the
infiltrated volume per unit length at the upstream end of the field
(where opportunity time = t) through the shape factors RZ1 [−] and
RZ2 [−]. Expressions for RZ1 and RZ2 applicable during the ad-
vance phase are (Christiansen et al. 1966; Scaloppi et al. 1995)

RZ1 ¼
1þ aþ rð1� aÞ
1þ aþ rð1þ aÞ ð5Þ

and

RZ2 ¼
1

1þ r
ð6Þ

Eq. (5) is an approximation to the actual solution to the integral
associated with the τa term, which is in the form of a gamma
function (Strelkoff et al. 2009). During the postadvance phase,
the subsurface shape factors RZ1 and RZ2 are given respectively by

RZ1 ¼ 1þ
XN
i¼1

�ðt∕tLÞir
r þ i

Yi�1

j¼0

a� j
i� j

ð7Þ

and

RZ2 ¼
�
1� rðt∕tLÞ

r þ 1

�
ð8Þ

Eqs. (7) and (8) were developed by Scaloppi et al. (1995) [cor-
rected in Strelkoff et al. (2009)]. In Eq. (7), N = the number of terms
used in the expansion; i and j = indices; and the operator

Q
denotes

the product of i terms. The Eqs. (5) and (7) are functions of the
constants a and r [the exponents of Eqs. (2) and (3), respectively]
while Eqs. (6) and (8) are functions only of r.

1Research Hydraulic Engineer, USDA-ARS Arid Land Agricultural
Research Center, 21881 N. Cardon Ln., Maricopa, AZ 85238 (correspond-
ing author). E-mail: Eduardo.Bautista@ars.usda.gov

2Research Hydraulic Engineer, USDA-ARS Arid Land Agricultural
Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85238. E-mail:
Theodor.Strelkoff@ars.usda.gov

3Senior Hydraulic Engineer, West Consultants, Inc., 8950 S. 52nd St.,
Suite 210, Tempe, AZ 85284-1043; formerly, Laboratory Director,
USDA-ARS Arid Land Agricultural Research Center. E-mail:
bclemmens@westconsultants.com

Note. This manuscript was submitted on March 8, 2011; approved on
February 7, 2012; published online on February 9, 2012. Discussion period
open until January 1, 2013; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Irrigation and Drai-
nage Engineering, Vol. 138, No. 8, August 1, 2012. ©ASCE, ISSN 0733-
9437/2012/8-727–735/$25.00.

JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING © ASCE / AUGUST 2012 / 727

J.
 I

rr
ig

. D
ra

in
 E

ng
. 2

01
2.

13
8:

72
7-

73
5.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
du

ar
do

 B
au

tis
ta

 o
n 

08
/0

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.
N

o 
ot

he
r 

us
es

 w
ith

ou
t p

er
m

is
si

on
. C

op
yr

ig
ht

 (
c)

 2
01

2.
 A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
iv

il 
E

ng
in

ee
rs

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000462
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000462
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000462
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000462


When combined with Eq. (4), the volume-balance model is
given by

VinðtÞ � VyðtÞ � VroðtÞ ¼ ðRZ1 · kta þ RZ2 · btÞ ·W · xAðtÞ ð9Þ
Here Vin, Vy, and Vro represent the inflow, surface storage, and

runoff volumes, respectively, and xA ¼ Lf (the field length) when
Vro > 0. This expression is frequently used to formulate parameter-
estimation problems. In those applications, Eq. (9) is applied at two
or more times with observed irrigation data (e.g., advance as a func-
tion of time, runoff) and used to solve for one or more unknown
infiltration parameters. The value of r needed to solve for RZ1 and
RZ2 is found by fitting the advance trajectory measured at discrete
locations (xA � tx data pairs) to Eq. (3). The estimated parameters
are validated by feeding them into an unsteady-flow simulation
model Users typically accept the estimated parameters when sim-
ulation outputs and field observations are in reasonable agreement.
Differences between simulation results and observations generally
are attributed to random or faulty field data. In either case, users
often ignore potential biases in the computation of Vz. In particular,
users of these computational procedures are aware that a power ad-
vance law often does not fit measured advance data adequately,
but they are less clear about how this affects the accuracy of Vz
estimates, and, in those cases, whether those estimates can be
improved.

This article examines the relationship between infiltrated
volumes predicted with the zero-inertia simulation model, and
corresponding volumes computed with the power infiltration inte-
gral, Eq. (4). The objective is to quantify the potential magnitude of
the volume-balance errors under a representative range of condi-
tions, and to identify conditions under which those errors can be
substantial. The analysis is confined to the advance phase of the
irrigation, and to furrow irrigation with infiltration described by
Eq. (2). The first part of the analysis examines the behavior of a
shape factor σz characterizing the infiltration profile simulated with
the zero-inertia model, as a function of advance distance under vari-
ous hydraulic conditions. Here, σz is defined as the ratio

σzðxAÞ ¼
Zavg

Z0ðtÞ
ð10Þ

in which Zavg ¼ VzðtÞ∕xAðtÞ is the simulated average infiltration
over the advance distance xAðtÞ, and Z0ðtÞ = the corresponding in-
filtration at the upstream end. The second part of the analysis ex-
amines the relationship between σz and the volume-balance shape
factors, RZ1 [Eq. (5)] and RZ2 [Eq. (6)]. While RZ1 and RZ2 are
constants, their relative contribution to VzðtÞ varies with time be-
cause they multiply different terms in Eq. (4). Hence, one can com-
pare σz with σz PI , the shape of the infiltrated profile computed with
the power infiltration integral, Eqs. (4)–(6)

σz PI ¼
ðRZ1 · kta þ RZ2 · btÞW

Z0ðtÞ
ð11Þ

Finally, a strategy is presented for correcting errors associated
with Eqs. (4)–(6) in parameter-estimation problems.

Methodology

The analysis uses dimensionless furrow-irrigation scenarios that
were developed to represent a reasonable range of irrigation con-
ditions. The dimensionless system of variables is described in a
companion paper (Bautista et al. 2012). Dimensionless variables
reduce the number of governing parameters and allow results to
be generalized more easily. A dimensionless variable is obtained

by dividing a dimensioned variable by a reference variable. For
example, the dimensionless advance distance x�A is defined as
x�A ¼ xA∕XR, where xA is the dimensional distance and XR the
reference distance.

If Z is given by Eq. (2), then dimensionless advance
(x�A ¼ xA∕XR) as a function of dimensionless time t�ðt� ¼ t∕TRÞ
can be expressed as a function of four dimensionless parameters
x�Aðt�Þ ¼ f ðK�; a;B�;D�

0Þ, defined as

K� ¼ WkTa
R

Y2
R

; B� ¼ WbTR

Y2
R

; D�
0 ¼

AðYRÞ
Y2
R

�
RðYRÞ
YR

�
2∕3 nR

n

ð12Þ
In Eq. (12), TR, YR, nR = reference variables (time, vertical

length, Manning roughness coefficient n); AðYRÞ and RðYRÞ = flow
area and hydraulic radius as a function of YR, respectively;and all
other dimensionesd variables are as previously defined; K� and
B� = functions of the infiltration parameters k and b, respectively,
but they are also functions of slope and discharge;D�

0 = a parameter
related to the channel conveyance and a function of the cross-
sectional geometry (the side slope SS and bottom width BW for
a trapezoidal cross section).

To facilitate the interpretation of results and narrow the range of
the dimensionless variables to explore, a basic set of 16 dimension-
less scenarios was defined from a set of dimensional scenarios. The
dimensional scenarios were defined from combinations of four
slopes and four infiltration conditions, as given in Table 1. The
table provides an identifier for each scenario, which are used later
in this article to label graphical results. Infiltration was defined
from the time treq needed to infiltrate a prescribed application depth
zreq. Furthermore, the following relationship was used to define b

b ¼ λ
zreq
treq

ð13Þ

In this expression, λ = a parameter that determines the relative
contribution of b to the infiltrated depth at treq. When λ ¼ 0,
Eq. (13) reduces to the Kostiakov equation, while λ ¼ 1 implies
a constant infiltration rate throughout the irrigation event.

The companion article (Bautista et al. 2012) explains the devel-
opment of the dimensionless scenarios. An initial set of scenarios
was developed with a ¼ 0:5 and λ ¼ 0:4. Thus, this set of scenar-
ios assumes that 40% of the zreq at treq is contributed by the steady-
infiltration term. Two additional sets were generated with a ¼ 0:5,
but with λ ¼ 0:1 and λ ¼ 1:0. This third set was included to study
the limiting case of water infiltrating at a constant rate. Two more
sets of scenarios were developed with λ ¼ 0:4, but with a ¼ 0:3
and 0.7. The K� and B� values for all sets of scenarios
(λ ¼ 0:4, a ¼ 0:5), (λ ¼ 0:1, a ¼ 0:5), (λ ¼ 1:0, a ¼ 0:5), and
(λ ¼ 0:4, a ¼ 0:3) are given in Bautista et al. (2012). It is worth
noting that changes to λ produce the same change in K� (for all
scenarios with the same slope) but have no effect on the dimension-
less furrow lengths and D�

0 or its dimensional counterparts. In con-
trast, a change in the infiltration exponent produces variations in K�

Table 1. Identifiers for the 16 Furrow-Irrigation Scenarios

treq (h)

S0

0.00001 0.0001 0.001 0.01

2 1 5 9 13

4 2 6 10 14

8 3 7 11 15

16 4 8 12 16
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of different magnitude with all scenarios. Thus, very different com-
binations of infiltration parameters can produce irrigation scenarios
that are closely related.

Simulations were conducted with the zero-inertia engine of the
WinSRFR surface irrigation analysis program (Bautista et al.
2009c). The program calculates σz at each time step with
Eq. (10); these values were extracted from the output file.

That Z is given by Eq. (2) is relevant to the objectives of this
study and merits further discussion. Unsteady flow simulation of
furrow irrigation will produce different infiltration profiles when
using an infiltration formulation that accounts for the variation
in wetted perimeter with depth as opposed to a formulation that
neglects those effects (Bautista and Wallender 1993). Hence, this
assumption directly impacts the subsurface shape factors. However,
because the goal is to improve the accuracy of volume-balance
calculations, and those calculations currently cannot account for
time-dependent wetted-perimeter infiltration effects, the results
presented herein have practical value. Furthermore, efforts to mea-
sure time-dependent wetted-perimeter effects on infiltration in the
field have produced inconclusive results, because of spatial and
temporal variability of furrow cross section and hydraulic resis-
tance, including erosion and deposition effects (Trout 1992; Walker
and Kasilingam 2004).

Results

The σz Relationships as a Function of xA

Here Fig. 1 illustrates the σzðx�AÞ relationships for the scenarios de-
veloped with λ ¼ 0:4, a ¼ 0:5. The σz curves generated for the
same K� plot are close to each other when plotted as a function
of log x�A because the order of magnitude of L�f is a function of S0.

All curves exhibit the same fundamental behavior. During the
initial advance, Z0 grows more rapidly than Zavg (and, therefore, σz
decreases as a function of x�A) because the stream elongates rapidly
while the infiltration rate at the field inlet is large. With increasing
advance, distance and time, the infiltration rate at the inlet decreases
while Zavg grows slightly faster because of a decreasing stream ad-
vance rate. Hence, σz eventually increases.

For a given K� (e.g., Scenarios 1–4), the effect of a decreasing
B� is to push the σz relationship upward and also to push the point
where the slope of the relationship changes from negative to pos-
itive farther upstream, especially at small slopes. Smaller values of
B� (i.e., smaller infiltration rates for the same zreq) should be ex-
pected to produce more uniform infiltration profiles, and thus,

larger values for σz. The effect of an increasing slope for scenarios
with the same treq (e.g., Scenarios 1, 5, 9, 13) is to increase the
stream advance rate. A larger stream speed induces larger differ-
ences between Zavg and Z0 at small advance distances (and thus
smaller σz values). For larger advance distances, a large stream
speed reduces the differences in intake opportunity time (and thus,
infiltrated volume per unit length) along the field. Hence, the range
for σz increases with increasing slope.

In Fig. 2, the σzðx�AÞ relationship is depicted for the scenarios
developed with a ¼ 0:5, λ ¼ 0:1. Curves generated for the same
K� plot closer to each other than in Fig. 1 and are difficult to tell
apart. In contrast with the results generated with λ ¼ 0:4 (Fig. 1),
σz decreases over a shorter advance distance and the range of varia-
tion for σz is narrower. These scenarios involve short fields relative
to the maximum advance distance (0:1∕B�). Beacuse σz attains its
maximum value (σz < 1) at the maximum advance distance, field
length limits the growth and, thus, the range of σz. Like the surface
shape factor (Bautista et al. 2012), σz tends to have a constant value
when b ¼ 0 because 1∕B� ¼ ∞.

The behavior of the σz relationships when the infiltration rate is
constant (a ¼ 0:5, λ ¼ 1:0) is illustrated in Fig. 3. Because the ini-
tial advance rate of the stream is much greater in these cases than
for the scenarios of Figs. 1 and 2, σz decreases more sharply. When
water infiltrates at a constant rate and the advance rate is large,
the shape of the infiltrated profile approximates a triangle
(i.e., σz → 0:5). The slope of the σz relationship eventually changes
as a result of a declining advance rate. Thereafter σz increases very
rapidly because advance distance approximates 1∕B�. In contrast to

Fig. 1. Simulated subsurface shape factors as a function of dimension-
less advance distance for the furrow-irrigation scenarios with λ ¼ 0:4,
a ¼ 0:5

Fig. 2. Simulated subsurface shape factors as a function of dimension-
less advance distance for the furrow-irrigation scenarios with λ ¼ 0:1,
a ¼ 0:5

Fig. 3. Simulated subsurface shape factors as a function of dimension-
less advance distance for the furrow-irrigation scenarios with λ ¼ 1:0,
a ¼ 0:5
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the results of Figs. 1 and 2, the range of variation for σz increases as
slope decreases. This is because of the very rapid decline in ad-
vance rate when the slope is small.

In Fig. 4, the σz relationships are compared for three values of
the infiltration exponent a (0.3, 0.5, and 0.7) with λ ¼ 0:4. Four of
the scenarios from Table 1 are included in the graph (1, 6, 11, and
16). The relationships developed with a ¼ 0:7 exhibit similar
trends to those developed with a ¼ 0:5; that is, σz first decreases
but later increases as a function of x�A. The range of variation for σz
is substantially greater when a ¼ 0:7 than with a ¼ 0:5, especially
when the slope is large (S16). The relationships developed with a ¼
0:3 exhibit a very different behavior. In those cases, σz decreases as
a function of distance (for the range of advance distances included
in the analysis) and the range of variation decreases with increasing
slope. When a is small, the infiltration rate at small times is large,
and consequently, the initial advance is slow. However, the advance
rate tends to remain constant because transient infiltration effects
dissipate quickly. If the stream elongates at a relatively constant
rate, then Zavg cannot grow very fast relative to Z0. Thus, σz de-
creases over a longer advance distance when a is small. When a
is large, advance is initially fast but slows down rapidly because
transient infiltration effects persist. The pronounced stream decel-
eration explains the subsequent rapid increase in σz.

Relationship between the Simulated
and Volume-Balance Shape Factors

The first question examined in this section is the magnitude of the
errors resulting from the application of Eq. (4) as a function of x�A.
Those errors are quantified in relation to the infiltrated volumes
computed with zero inertia as follows.

Volume-balance errors EVB were calculated for each set of sce-
narios presented in Figs. 1–4; EVB is defined as

EVB ¼ Vz PI � Vz ZI

Vin
× 100 ð14Þ

In Eq. (14), Vz PI = the infiltrated volume computed with the
power-law integral; Vz ZI = the corresponding volume computed
with zero-inertia simulation; and Vin = the inflow volume. In this
expression the Vz PI , Vz ZI , and Vin are evaluated at t�ðx�AÞ. The
advance exponent r needed by the power-law integral was calcu-
lated from the simulated advance trajectories. The simulated
xA � tx data pairs were fitted to Eq. (3) using nonlinear regression.
Results are presented in Figs. 5–8. Regression r2 values exceeded
0.99 except for the scenarios illustrated in Fig. 7 and in
Fig. 8, a ¼ 0:7.

These results show, first, that the power-law integral generally
overestimates Vz except when x�AB

� is close to L�f . The error at x
�
A ¼

L�f generally is small but negative. Under the range of conditions
examined herein, the absolute value of EVB generally is less than
5% but errors can exceed 10%. Systematic differences between the
volume-balance and zero-inertia infiltration volumes translate into
differences between the observed advance and advance predicted
with the zero-inertia model, independent of erroneous inputs
and/or random field properties. Hence, these errors affect the ability

Fig. 4. Simulated subsurface shape factors as a function of dimension-
less advance distance and the exponent a (a ¼ 0:3, 0.5, and 0.7) for 12
furrow-irrigation scenarios (λ ¼ 0:4)

Fig. 5. Volume-balance errors computed with power-law shape factors
for the furrow-irrigation scenarios with λ ¼ 0:4, a ¼ 0:5

Fig. 6. Volume-balance errors computed with power-law shape factors
for the furrow-irrigation scenarios with λ ¼ 0:1, a ¼ 0:5

Fig. 7. Volume-balance errors computed with power-law shape factors
for the furrow-irrigation scenarios with λ ¼ 1:0, a ¼ 0:5
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to validate infiltration parameter estimates with zero-inertia
simulation.

Because EVB varies with x�A, the relative magnitude of the errors
should be considered in selecting locations at which to compute
volume-balance relationships. In the examples of Figs. 5 and 6,
EVB peaks at short advance distances but decreases thereafter (this
is not entirely evident from the graphs, because of the logarithmic
scale for x�A). These results suggest that short advance distances
should be avoided when calculating volume-balance relationships.
However, the results of Figs. 7 and 8 show that Eq. (4) can be very
inaccurate when applied near the maximum advance distance if λ
and/or a are large. For example, if the well-known Elliott and
Walker (1982) two-point parameter-estimation method is applied
to the conditions of Fig. 8 (Scenario 16, λ ¼ 0:4, a ¼ 0:7), then
the middle of the field corresponds to the location with the largest
EVB. The error can be reduced by calculating a volume balance,
say, at three-quarters of the field length, although the error is still
substantial.

The results of Figs. 5–7, in combination with those of Figs. 1–3,
suggest that the potential magnitude of errors increases as the range
of σz increases. The results of Figs. 8 and 4 show this is not always
the case. The σz varies over a wider range for scenarios generated
with a ¼ 0:3, λ ¼ 0:4 (Fig. 4) than for scenarios generated with
a ¼ 0:5, λ ¼ 0:4 (Fig. 4), but the corresponding volume-balance
errors are smaller (Fig. 8). Similarly, σz varies over a much wider
range for scenarios generated with a ¼ 0:5 and λ ¼ 1 (Fig. 3) than
for scenarios (a ¼ 0:7, λ ¼ 0:4) (Fig. 4), but the peak error is
greater with the latter (EVB ≈ 14%) (Fig. 8). The following para-
graphs explore the nature of these errors.

In Fig. 9, the relationship between σz, the power-law shape fac-
tors, and σz PI for Scenario 16 of Fig. 1 (λ ¼ 0:4, a ¼ 0:5) is ex-
amined. Results are plotted as a function of a new dimensionless
variable, x�AB

�, the ratio of the dimensionless advance distance and
the theoretical maximum distance that water can advance under the
given conditions. Recall that the dimensionless field lengths for
these scenarios were determined as L�f ¼ λ∕B�, Therefore, in Fig. 9
(and in the figures that follow), the maximum value of x�AB

� is the
relative dimensionless field length L�f ∕ð1∕B�Þ ¼ λ. In addition,
RZ1 and RZ2 were used to determine σz PI at x�AB

� ¼ 0:1, 0.2,
0.3, and 0.4. In the figure, the solid line represents σz, the dashed
lines RZ1 and RZ2, and the filled squares with dashed lines re-
present σz PI . While σz is mostly an increasing function of
x�AB

�, σz PI is a decreasing function. The slope of σz PI is neces-
sarily negative, first because RZ1 is always larger than RZ2, and
second because the contribution of RZ1 to Vz diminishes with time
because it multiplies the transient term kta. Thus, the power integral

cannot represent the evolution of σz when σz is an increasing func-
tion of x�AB

�.
Because flow deceleration is more extreme with increasing ad-

vance distance, estimates of r decrease as the advance distance used
to fit Eq. (3) increases. Smaller values of r translate into larger val-
ues for the shape factors. This implies that the slope of σz PI can be
made positive by using a variable value of r, that is, by recalculating
r with increasing advance distance (with r calculated with nonlin-
ear regression). This is illustrated in Fig. 10. Power advance rela-
tionships were developed from field segments of increasing length,
corresponding to x�AB

� values of 0.1, 0.2, and 0.3. These r values
were used to compute the shape factors, which are displayed in the
figure along with the values previously computed for x�AB

� ¼ 0:4
[RZ1 (NLR) = filled circle, and RZ2 (NLR) = filled triangle]. As
expected, the shape factors and the resulting σz PI (filled square
with dashed line) increase with distance and track σzðx�AB�Þ better

Fig. 8. Volume-balance errors computed with power-law shape factors
for the furrow-irrigation scenarios with λ ¼ 0:4, a ¼ 0:3, 0.5, and 0.7

Fig. 9. Relationship between σz, (RZ1, RZ2), and σz PI for Scenario 16,
λ ¼ 0:4, a ¼ 0:5

Fig. 10. Effect of the data and method used to calculate the advance
exponent r on the relationship between σz, (RZ1, RZ2), and σz PI for
Scenario 16, λ ¼ 0:4, a ¼ 0:5
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than by using a constant value of r. In fact, for this example, RZ1

(NLR) nearly matches σz.
In addition to the length of the advance trajectory, r depends on

the number of measured data points and the method used to fit the
data. In practice, the advance trajectory is often measured using
only two data pairs, one located in the middle of the field and
the other at the end of the field. These data can be combined with
the log transform of Eq. (3) to set up a system of two linear equa-
tions and unknowns. Of interest, then, is the exploration of how
results are affected by using this two-point technique.

Power advance relationships were developed using the two-
point method for the same field segments as before (x�AB

� ¼ 0:1,
0.2, 0.3, and 0.4). Because the two-point method ignores the early
part of the advance trajectory, when velocities are larger, r values
are smaller than those computed with regression. Hence, the result-
ing shape factors [RZ1 (2-point) = empty circle, and RZ2 (2-point) =
empty triangle] are larger than the values derived from nonlinear
regression (Fig. 10). As a result, the corresponding σz PI (two-
point) series (empty squares with dashed line) is closer to the σz

relationship than the σz PI (NLR) series.
Three additional scenarios were examined, Scenario 1 λ ¼ 1:0,

a ¼ 0:4 (Fig. 11), Scenario 1, λ ¼ 0:4, a ¼ 0:3 (Fig. 12), and Sce-
nario 16, λ ¼ 0:4, a ¼ 0:7 (Fig. 13). The figures depict σz, σz PI

calculated with a constant r (r calculated using advance to the
end of the field, x�AB

� ¼ λ) and the shape factors calculated with
variable r (r updated with increasing advance distance),

When λ ¼ 1:0, σz PI ≡ RZ2. If the power infiltration integral is
applied under those conditions with a constant r, it will necessarily
and substantially overestimate infiltration except when close to
x�AB

� ¼ λ (Fig. 11). Calculations at x�AB
� ¼ λ result in an absolute

error in excess of 5%, because of the extreme nonlinearity of the
advance trajectory. More accurate VZ estimates can be developed at
shorter advance distances if r is updated as a function of advance
distance.

The σz and σz PI relationships are in close agreement for Sce-
nario 1, λ ¼ 0:4, a ¼ 0:3 (Fig. 12), a case for which the slope of the
σz relationship is negative (for the field length considered in the
analysis). For this example, the range of r values fitted from

different advance segments is much narrower than for the examples
of Figs. 10 and 11. Because r values are not very different, the
shape factors are also very similar with increasing advance dis-
tance. Similarly, r values calculated with only two advance points
are not very different from those calculated with multiple data
points and regression, at least for the range of distances illustrated
in Fig. 12.

In contrast with the previous example, the advance trajectory is
initially fast but very nonlinear when λ ¼ 0:4, a ¼ 0:7 (Fig. 13).

Fig. 11. Relationship between σz, (RZ1, RZ2), and σz PI for Scenario 1,
λ ¼ 1:0, a ¼ 0:5

Fig. 12. Relationship between σz, (RZ1, RZ2), and σz PI for Scenario 1,
λ ¼ 0:4, a ¼ 0:3

Fig. 13. Relationship between σz, (RZ1, RZ2), and σz PI for Scenario 1,
λ ¼ 0:4, a ¼ 0:7
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This is indicated by the range of r values given in the figure. The
slope of the σz relationship is mostly positive and varies over a wide
range, and thus the differences between σz and σz PI are more ex-
treme than for the example of Fig. 9. The difference between σz and
σz PI is greatest at x�AB

� ¼ 0:1, but the corresponding EVB is great-
est at x�AB

� ¼ 0:2. When x�AB
� ¼ 0:1, the infiltrated volume relative

to the applied volume is small and, thus, translates into a small
value of EVB. Unlike the results of Fig. 10, the shape factors calcu-
lated for this example with nonlinear regression do not bracket the
σz relationship, even for short advance distances. Thus, use of non-
linear regression to calculate r seems more questionable than with
previous examples.

Discussion

The above results assume perfect knowledge of advance distance
as a function of time. In practice, field-measured advance data can
be erratic and the computed r can be very sensitive to one or more
data points. Hence, values of r calculated for increasing advance
distances may fail to decrease monotonically. Similarly, values
of r computed from two advance measurements may fail to
adequately represent the observed advance trajectory. In those
cases, use of multiple advance data and nonlinear regression may
still be the recommended approach for estimating r (McClymont
and Smith 1996)

Additional simulations, which are not documented here, suggest
that the slope of σz relationship tends to remain negative for longer
advance distances when a < 0:5 and becomes positive at short dis-
tances when a > 0:5. Of interest then is the range of a values that
can be encountered in practical field situations. Recent simulation
studies have generated one-dimensional infiltration solutions based
on the governing equations of unsaturated porous media flow, for
different initial and boundary conditions, and fitted those results to
the extended Kostiakov equation (Furman et al. 2006; Valiantzas
et al. 2009). Those results suggest that a is generally less than
0.5, but larger values were also computed with light soils. The
new National Resources Conservation Service (NRCS) infiltration
functions (Walker et al. 2006), which were developed mostly from
field-measured furrow-irrigation data, have a values that range
from 0.188 to 0.749, with low values associated with heavy soils
and large values associated with light soils. Light soils are also con-
ditions under which the steady state term in Eq. (2) can be expected
to be relatively large. These results imply that the potential for in-
accurate Vz estimates with Eq. (4) is greatest with light soils, and
further increases if the slope is large.

Iterative Use of the Infiltration Power-Law Integral with
Zero-Inertia Simulation

The above results show that Eq. (4) can be inaccurate relative to
zero-inertia model infiltration predictions under some field condi-
tions. Results of a volume-balance analysis need to be interpreted
carefully, at the very least, under those conditions. The analysis
shows that the accuracy of volume-balance results can be improved
by updating the value of r with advance distance, but as noted in the
previous section, those values when derived from field data may not
vary monotonically. Another complication in the application of the
volume-balance model is that surface-volume estimates required by
Eq. (9) are also uncertain (Bautista et al. 2012). Those estimates
generally are derived as follows:

Vy ¼ σyA0xA ð15Þ
In this expression, σy = a surface profile shape factor and A0 =

the upstream cross-sectional flow area. Typical applications of

Eq. (15) assume normal depth for the calculation of A0 and a con-
stant σy. Given these constraints, a better alternative for refining Vz
estimates is to iterate the volume-balance calculations using zero-
inertia simulated σz values instead of the shape factors given by
Eqs. (5)–(8). The same simulation data can be also used to refine
the Vy estimates. The following example illustrates the procedure
as applied to a parameter-estimation problem.

The example corresponds to the Printz 3-2-3 furrow, originally
reported in Elliott (1980), and later analyzed in Bautista et al.
(2009b). Inputs for this example are Lf ¼ 350 m; Q ¼ 3:75 l∕s
with a 110-min cutoff time; S0 ¼ 0:0025; BW ¼ 0:14 m;
SS ¼ 1:61; Wðfurrow spacingÞ ¼ 1:52 m; and n ¼ 0:025. The
given discharge and slope are average values. With the given data,
the applied depth was 46.5 mm while the infiltrated depth calcu-
lated from the final volume balance was 44 mm.

A parameter-optimization procedure was set up in a spreadsheet,
using the advance times to the middle and end of the field and cut-
off time. The methodology, described in Bautista et al. (2009a),
searches for a parameter combination that minimizes the squared
difference between the left-hand side of Eq. (9) (the measured in-
filtration) and the right-hand side (the predicted infiltration).
Although all three parameters of Eq. (2) are unknown, the example
is based on optimization of k and b only, with a ¼ 0:5. The pro-
cedure can be repeated with other values of a if further potential
improvements in the solution need to be examined.

Table 2 shows the advance times and inflow and runoff volumes
needed for application of Eq. (9). Iteration results are presented in
Table 3. The upstream depth y0 needed to determine surface storage
was calculated using the procedures described in Bautista et al.
(2012). In the first iteration, RZ1∕RZ2 and a reasonable estimate
of the surface shape factor σy were used to determine Vz and
Vy, respectively. These values were used to determine a first set
of infiltration parameters k and b. This solution was tested with
simulation, using the measured hydrograph and field elevations
as a function of distance. The goodness of fit of the estimated in-
filtration function was evaluated, in this example, by comparing the
measured and simulated infiltrated depths (z) and runoff hydro-
graphs. The Nash-Sutcliffe efficiency indicator (NSE) (Nash and
Sutcliffe 1970) was used to compare runoff values. The first iter-
ation yielded an infiltrated depth of 40 mm and a low value for NSE
(�1:62). A second zero-inertia simulation was conducted with the
estimated parameters, but with average discharge and slope. This
step is needed because surface-volume computations assume a
depth profile that varies gradually as a power law of distance
(Bautista et al. 2012). Values for the subsurface and surface shape
factors, σz and σy, computed at Lf and Lf ∕2 (Table 3) were ex-
tracted from the simulation results and provided as inputs to the
second iteration of the parameter optimization procedure. The se-
quence of computations was carried out three additional times. The
second iteration produced substantial improvements in both
the predicted infiltrated depth and the NSE indicator (Table 3).
The third iteration produced a slight improvement in the predicted
infiltrated depth, but a decrease in NSE. The final iteration pro-
duced improvements in both indicators, in comparison with the

Table 2. Inflow Volume, Average Discharge, and Runoff Volume at
Advance Times to the Middle of the Field, End of the Field, and Cutoff
Time for the Printz 3-2-3 Example

t (min) x (m) Vin (m3) Q (L∕s) (average) Vro (m3)

27.0 175 4.86 3.00 0.00

63.5 350 13.46 3.53 0.00

110.0 350 24.74 3.75 1.13
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results of the second and third iterations. The fact that the estimated
parameters are very sensitive to the shape factors may help explain
oscillations in the NSE value. In addition, the NSE indicator can be
very sensitive when using short time series, as is the case in this
example.

The accuracy of the solution ultimately depends on the accuracy
of the inputs and the degree to which simulation-model assump-
tions are met in the field. With this important limitation in mind,
it is still necessary to recognize that different infiltration solutions
emerge, from the initial optimization problem to the last, and that,
by the end of the process, the infiltrated volumes computed with
Eq. (4) are closer to the simulated ones.

A final observation about this example is that the final solution,
k ¼ 9:82 mm∕h0:5 and b ¼ 18:15 mm∕h represents a soil for
which the steady infiltration rate contributes a large fraction of
the infiltration depth. An irrigation target of 50 mm, which is close
to the applied and infiltrated depths from the field measurements,
can be infiltrated in 2 h. The maximum advance distance that can be
reached with b ¼ 18:15 and Q ¼ 3:75 L∕s is 486 m, thus the field
length (350 m) is over 70% of maximum length. These are the
conditions under which the shape factors of the power infiltration
integral can be inaccurate.

Conclusions

The power infiltration integral, derived by combining the Lewis-
Milne integral equation with a power-law relationship for advance
distance as a function of time, is more reliable when the ratio of
average infiltration to upstream infiltration (σz) is a decreasing
function of advance distance. Large steady-infiltration rates relative
to the transient infiltration rate (λ), of the infiltration exponent a,
and large field bottom slopes make the slope of the σz relationship
positive at shorter relative advance distances, and thus make the
power infiltration integral less accurate. The power-law integral
can still yield reasonable infiltration estimates when the slope of

σz is positive, but only if σz varies over a limited range. This is
more likely when λ and S0 are small, even for relative large values
of a. In theory, the limitations of the power advance integral can be
largely overcome by updating the value of r with increasing ad-
vance distance. This approach is limited by the erratic nature of
field-measured advance data. A practical method for correcting
these errors is by solving the volume-balance problem iteratively
with the help of zero-inertia simulation. Subsurface shape factors
(and surface shape factors) generated by the simulation can be used
to update the volume-balance calculations.

Notation

The following symbols are used in this paper:
A0 = upstream flow sectional area;
a = empirical infiltration exponent;

BW = bottom width for a trapezoidal furrow;
b = empirical infiltration steady-infiltration rate

constant;
EVB = volume-balance error;
FS = furrow spacing;
k = empirical infiltration constant;
Lf = field length;
n = Manning roughness coefficient;
p = power advance constant;

Q0 = inflow rate;
R = hydraulic radius;

RZ1;RZ2 = shape factors of the power-law infiltration integral;
r = power advance exponent;
Sf = friction gradient;
S0 = field bottom slope;
SS = side slope for a trapezoidal furrow;
t = time;

treq = time required to infiltrate the required infiltration
depth zreq;

tx = advance time to distance x;
Vin = inflow volume;
VRO = runoff volume;
Vy = surface storage volume;
VZ = infiltration volume;
xA = advance distance;
y = flow depth;
yn = normal flow depth;
y0 = upstream flow depth;
Z = infiltration volume per unit length;
z = infiltration volume per unit area;

zreq = required infiltration depth;
λ = relative contribution of the steady-state infiltration

term to zreq in treq;
σY = surface shape factor; and
σz = ratio of average and upstream infiltration volume

per unit length computed by zero-inertia simulation.
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